jueves, 28 de noviembre de 2019

Etapas del ciclo celular donde se encuentran las moléculas reguladoras (Elaborado: Jennifer Aracely Hernandez Rodriguez.)


Las células de los distintos organismos pasan durante su vida por distintos períodos, cada uno de ellos característico y claramente diferenciado.
Cada tipo celular cumple con sus funciones específicas durante la mayor parte de su vida, creciendo gracias a la asimilación de materiales provenientes de su ambiente y con ellos sintetiza nuevas moléculas por medio de complejos procesos regulados por su material genético.
Cuando una célula aumenta hasta llegar a un determinado tamaño, su eficiencia metabólica se torna crítica, entonces se divide. En los organismos pluricelulares, se produce un crecimiento a partir de una célula (huevo o cigoto) como así también se aumenta la masa tisular y se reparan los tejidos lesionados o desgastados, por aumento del número de células.
Resultado de imagen para etapas del ciclo celular
Las nuevas células originadas en esta división poseen una estructura y función similares a las células progenitoras, o bien derivadas de ellas.
En parte son similares porque cada célula nueva, recibe aproximadamente la mitad de organoides y citoplasma de la célula madre, pero en términos de capacidades estructurales y funcionales lo importante es que cada célula hija, reciba una réplica exacta del material genético de la célula madre.
Durante la vida celular, las células pasan por un ciclo regular de crecimiento y división. A esta secuencia de fases se la denomina ciclo celular y en general consta de un período donde ocurre un importante crecimiento y aumento de la cantidad de organoides (interfase) y un período de división celular (mitosis o meiosis).
La interfase involucra períodos donde la célula realiza los procesos vitales propios de su función. Durante ella, se producen también fenómenos a nivel nuclear imprescindibles para la división posterior. Cronológicamente podemos dividir la interfase en tres etapas G1, S y G2.
Haciendo un esquema del ciclo celular, el tiempo en que transcurre cada una de las etapas se representa en la Fig. 12.2.
Es necesario señalar que existen excepciones a este ciclo, ya que no en todas las células los períodos tienen la misma duración. Incluso si consideramos una población celular homogénea (células del mismo tipo), existen variaciones particulares. Siempre que se habla de tiempos determinados, se hace considerando los promedios de cada tipo celular.
También existen células que dejan de dividirse por largos períodos o bien permanentemente. Por ejemplo, las neuronas permanecen luego de la maduración del tejido nervioso en una etapa especial denominada G0, donde las células entrarían como alternativa a G1. En la actualidad es frecuente referirse a este tipo de células como "no cíclicas" o detenidas en G1, ya que no es seguro que las células que no se dividen pasen por un solo estadío.
Resultado de imagen para etapas del ciclo celular

CARACTERISTECIAS
1.    Etapa G1: Esta etapa que sucede a la división celular es la más variable en duración. Las células hijas recientemente originadas presentan una gran actividad metabólica produciéndose un aumento acelerado del tamaño celular. Los organoides de la célula precursora han sido repartidos de manera más o menos equitativa entre las células hijas, deben entonces aumentar de tamaño y también en número para mantener las características de su tipo celular. Se sintetizan así ribosomas y microtúbulos a partir de las proteínas y otras moléculas que la conforman. Los organoides del sistema de endomembranas, aumentan considerablemente de tamaño, ya que ambas células hijas han recibido parte de estos organoides. Sin embargo, pueden ser sintetizados de nuevo en caso de no existir precursores. Esto no ocurre con mitocondrias y cloroplastos que se originan por división de estas estructuras preexistentes. Como se recordará ambos organoides contienen ADN y ribosomas que les permite dividirse de forma relativamente independiente del núcleo celular.  En este período se observa, a su vez, una gran síntesis de ARNm como así también ARNt y ARNr. Estos ácidos serán utilizados para la síntesis de proteínas estructurales, para la construcción y o aumento de los organoides, como así también la producción de enzimas necesarias para dicha síntesis. Cabe destacar que durante este período también se sintetizan las enzimas que serán utilizadas en la etapa siguiente, es decir en la duplicación del ADN, como así también moléculas precursoras de los ácidos nucleicos.  Cuando las células dejan de crecer (si se agotan los nutrientes o por inhibición por contacto) lo hacen en G1. Esto implica que también se sintetizan las sustancias que estimulan o inhiben distintas fases del ciclo celular.
2.    Etapa S: el período S o de síntesis de ADN tiene como característica fundamental la síntesis de nuevo material genético, para que las células hijas tengan la misma dotación. Sin embargo persisten los altos índices de síntesis de ARN para obtener enzimas requeridas en la síntesis de histonas que formarán parte de la macroestructura del ADN y tubulinas relacionadas con el proceso de división celular.
3.    Etapa G2: En esta fase, ya con el ADN duplicado, la célula ensambla las estructuras necesarias para la separación de las células hijas durante la división celular y la citocinesis (separación del citoplasma).
4.    Etapa M: Durante M, la envoltura nuclear se desintegra, la cromatina se condensa en forma creciente hasta ser visible los cromosomas al microscopio óptico. Estos cromosomas formados cada uno por dos cromátidas (cromosomas duplicados) pasaran por cada una de las fases de la división celular (mitosis o meiosis) para concluir con la formación de las células hijas, cada una con una única copia de su ADN (cromosomas sin replicar), que marcan el inicio de un nuevo ciclo.
PROTEÍNAS REGULADORAS DEL CICLO CELULAR
Resultado de imagen para PROTEINAS REGULADORAS DEL CICLO CELULAR
El pasaje de una célula a través del ciclo es controlado por proteínas citoplasmáticas. Los principales reguladores del ciclo en células animales son:  
1.    Las ciclinas, proteínas que controlan la actividad de sus proteinquinasas dependientes. La concentración de ciclinas varía en forma cíclica, aumentando o disminuyendo durante el transcurso del ciclo celular. Esto se debe a variaciones en la velocidad de degradación de la ciclina, dado que la velocidad de síntesis es casi constante durante todo el ciclo. En los mamíferos existen 6 ciclinas como mínimo, denominadas A, B, C, D, E y F (Fig. 12.4b), pero nosotros las clasificaremos como ciclinas de G1 y ciclinas mitóticas. Las ciclinas G1 se unen a sus quinasas dependientes de ciclinas (Cdk2) durante G1 siendo necesarias para superar el punto de control G1 y pasar a la fase S. Las ciclinas mitóticas se fijan a la quinasa Cdk1 durante G2, siendo necesaria su presencia para que el ciclo supere el punto de control G2 y se inicie la mitosis.
2.    Las quinasas dependientes de ciclinas (CDK), enzimas que mediante la fosforilación de determinadas proteínas desencadenan los procesos subordinados del ciclo celular. En los mamíferos se conocen 5 CDK las cuales forman tres grupos principales:  





o   CDK de fase S (Cdk2)
o   CDK de fase M (Cdk1)
 A diferencia de la concentración de ciclinas, la concentración de CDK se mantiene durante todo el ciclo celular, por permanecer constantes tanto la velocidad de síntesis como la de degradación (Fig. 12.4 y 12.5)
Las CDK se activan sólo cuando se unen a las ciclinas para formar complejos, por lo que requieren un nivel umbral para desencadenar la transición a la fase siguiente del ciclo celular.
3.    El Complejo Promotor de la Anafase (APC) y otras enzimas proteolíticas. El APC desencadena los eventos que conducen a la destrucción de las cohesivas, permitiendo a las cromátidas hermanas separarse e iniciando la degradación de las ciclinas mitóticas.  

LA SÍNTESIS DE ADN ES DISCONTINUA
1.    Una de las características de las ADN-polimerasas es que sólo pueden actuar en dirección 5’3’, por agregado de nucleótidos en el extremo 3’ de las cadenas nuevas. Como vimos, a medida que se separan las cadenas progenitoras en la horquilla de replicación, una presenta sus nucleótidos en dirección 5’ 3’ y la otra en dirección 3’ 5’. De manera que la primera al ser copiada debería formar una cadena hija en sentido 3’ 5’, algo que las polimerasas no pueden hacer.
2.    Las células solucionan esta situación utilizando estrategias distintas en la construcción de cada una de las nuevas cadenas. La cadena hija que se formó en dirección 5' 3’ se construye en forma continua mediante el agregado de nucleótidos en el extremo 3’ a medida que avanza la horquilla de replicación. En cambio, la otra cadena hija es sintetizada de manera discontinua, en pequeños tramos, llamados fragmentos de Okazaki, los cuales se unen entre sí a medida que se sintetizan, por acción de la enzima ADN-ligasa.
Resultado de imagen para LA SÍNTESIS DE ADN ES DISCONTINUA
3.    Por lo expuesto, podemos decir que la síntesis del ADN es un proceso bidireccional, no sólo porque se produce en dos direcciones divergentes a partir de una misma burbuja de replicación, sino también porque las cadenas de la doble hélice son sintetizadas en direcciones.





MODELO SEMICONSERVATIVO
Como las nuevas hélices de ADN están formadas por una cadena original (preexistente) que sirvió de molde y una cadena nueva (recién sintetizada) decimos que el mecanismo de replicación es semiconservativo.
SÍNTESIS DE ADN
Para iniciar la síntesis de las cadenas complementarias se requiere además del ADN molde un cebador o primer, que consiste en una pequeña cadena de ARN de unos diez nucleótidos de largo. La síntesis del cebador es catalizada por una enzima llamada ARN-primasa y el cebador queda unido al ADN temporariamente. Una vez sintetizado el cebador la síntesis continúa si la ADN-polimerasa tiene disponibles suficientes desoxirribonucleótidos trifosfatados (dATP, dGTP, dCCP y dTTP). Éstos se agregan en la cadena nueva de acuerdo a la secuencia de nucleótidos de la cadena que sirve de molde.
Gran parte de la energía requerida durante la replicación la aportan los desoxirribonucleicos trifosfatados, que hidrolizan los últimos dos grupos fosfato (liberando energía) cuando se unen entre sí.
Iniciada la síntesis de ADN a partir del cebador, la ADN-polimerasa a (alfa) es reemplazado por la ADN-polimerasa e (épsilon), enzima de alta procesividad (más rápida), que elonga la hebra continua, mientras que la ADN-polimerasa d (delta) se encarga de elongar los fragmentos de Okazaki de la hebra discontinua.
Las ADN-polimerasa e (épsilon) y d (delta) catalizan la síntesis de las cadenas nuevas agregando nucleótidos en el extremo 3’ de las hebras en formación. Mientras tanto los cebadores de la cadena rezagada son removidos por la actividad nucleasa reparadora de la ADN-polimerasa d (delta) y su lugar es reemplazado por un fragmento de ADN equivalente. Como vimos la cadena continua requiere un solo cebador que se forma a comienzo de la replicación, en cambio la cadena discontinua necesita muchos cebadores, uno para cada fragmento de Okazaki. Cabe señalar que las ADN-polimerasas d (delta) y e (épsilon) son sostenidas por un anillo proteico llamado PCNA (Proliferación Cell Nuclear Antigen) mientras realiza el deslizamiento por la cadena de ADN. Está asociación entre polimerasas y PCNA hace posible el aumento en la velocidad de síntesis. Al inicio, la síntesis es lenta debido a que el complejo ADN polimerasa a (alfa)-primasa no se asocia al anillo de PCNA.
 

Resultado de imagen para LA SÍNTESIS DEl ADNResultado de imagen para LA SÍNTESIS DEl ADN

No hay comentarios.:

Publicar un comentario

HOMEOSTASIS DEL ECOSISTEMA (Elaborado por Rafael Navarrete Cocole. 4-E)

Es el equilibrio dinámico que se produce mediante las relaciones entre las comunidades naturales y su medio.  Cuando ese equilibrio se ...